SEQUESTERING
CARBON IN WETLANDS
THROUGH ENZYME
SUPPRESSION
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Our start point

e The mystérious case of
the head in the bog

— Cheshire 1983
— Murder?
* Routine testing

— Carbon dating
— 1000+ yrs
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Outline

. Why is preservation so
effective in peat bogs?

e What is the enzymic latch

— How peat bogs affect a
planet

e Implications of the
enzymic latch

e Use in geoengineering
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Identnfymg an “Enzymlc I.atch”
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CO, is released if these ‘wetlands
become ‘dr Iands '

Effect of lowering water table

e Assumptions:

e Waterlogging reduces 0,
abundance

e Lack of O, restricts
decomposition

watertable reduction (cm)
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e Because as everyone knows.....

Microbes are far more active with
O2

Enzymes need O2 /& ¥ & #?




Supporting evidence?

* Do studies of other O2-free environments confirm the importance
of 027

— Anaerobic sewage treatment; Rumen

Do anaerobic conditions mean low hydrolase activity?
* [s decomposition / microbial metabolism inefficient?

::— thtle ewdence to suggest that Oz enrlchment should C Wltcss

favour enzymlc decompos:tlon
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In fact peat enzymes behave like
those other anaerobic enzymes
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Hydrolases become more actlve in drler condltlons desplte being s C

unaffected by O2 but why’? :
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Clue 1: When Phenol Oxidase Is hlghly active,
phenolics become scarce

D3O ‘ TIITNRTIY

' Phenol oxidase is one of
the few enzymes able to
degrade phenolics
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Phenol oxidase

Without Phenol Oxidase,
phenolics accumulate
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Fmding the “Enzymlc Latch”



Clue 2: ONE OF THE KEY CHARACTERISTICS OF
WETLAN DS — BROWN WATERS

e Peatlands are full of....

e Phenolics (polyphenols, tannins, humics)
. Create background absorbance and quench
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Phenollcs are abundant m wetlands C
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Clue 3: When peats become drier, pheholics’
disappear i 50 |

b

)

» When a drought
introduces 02 to the
peat:

Phenolic compounds (% change)

— Phenol oxidase soars i
— Phenolics disappear ~50
* One of the most 1
dramatic impacts of
droughts TR T A T

Weeks of drought
- Mhuﬂﬂfw:ww

ThbSé 'phenollcs dlsappear under dner
. conditions : 4



Clue 4: Phenolics are potent hydrolase enzyme
Inhibitors fHHith |

e Phenolics inhibit enzymes e N
e Removing even small 0 | .. \\7

amounts of phenolics can
increase hydrolase

o
activity T .
e Freeman et al 1990 § 80 1 "
e Wetzel 1992 ﬁ:: 60 1
e Vuorinen A.H. Saharinen M.H. 1996 s% “
g
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Soil phenolics (mg I™")
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Phenohcs lnhlblt hydrolases
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Phenolics (mg/L)

B-D-glucosidase activity
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Can we link this all together?
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 Phe-Ox! " Phenolics
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Not the on/off switch
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hydrolases!



O, has an indirect impact on wetland hydrolases'

brist communica

An enzymic ‘latch’ on a global carbon t



http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v409/n6817/index.html

The enzymic latch in more detail
:
b
Oxidase
emissions
e

Inorganic
nutrients

Freeman et al 2012 DOC
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WE CAN INCREASE PHENOLIC
ABUNDANCE
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More phenolics create more éuppressio_n of decomposition



WE CAN MODIFY PHENOL OXIDASE
ACTIVITIES BY CHANGING PLANTS
PRESENT

W100E full ight @75% BSOE
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Fig. 3. Phenol oxidase activity in the rhizosphere of peatland plant species. Mean
averages from the entire sis week experiment are shown [n=35] Errar hars indi-
Dunn et al (2018) § vk Exp e

cate & standard error.

e

LA R b

."‘-

Waolfson

Certain plants create more suppression of decomposition
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We can modify the environment &
affect microbial blodlverlsty/
enzyme activity and inhibition

“'re 9 Number of hits to phenol oxidase genes per Mbp of sequence in all MAGs which were 97%

reater complete.
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- We need to consider the
characteristics of individual
phenolics
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GEOGHQIHGGmQ PlanetEarth

EXpe1 1ment k.

With careful planning, We
should be able to use
phenolics to optimise
carbon sequestration

This may explain why Geoengineers are
getting seriously interested in Peatlands

N A AR sy disspssure o S
: An appllcatlon for the “Enzvmlc I.atch”? | C
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